Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 326(5): C1505-C1519, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557355

RESUMEN

Glaucoma is a blinding disease. Reduction of intraocular pressure (IOP) is the mainstay of treatment, but current drugs show side effects or become progressively ineffective, highlighting the need for novel compounds. We have synthesized a family of perhydro-1,4-oxazepine derivatives of digoxin, the selective inhibitor of Na,K-ATPase. The cyclobutyl derivative (DcB) displays strong selectivity for the human α2 isoform and potently reduces IOP in rabbits. These observations appeared consistent with a hypothesis that in ciliary epithelium DcB inhibits the α2 isoform of Na,K-ATPase, which is expressed strongly in nonpigmented cells, reducing aqueous humor (AH) inflow. This paper extends assessment of efficacy and mechanism of action of DcB using an ocular hypertensive nonhuman primate model (OHT-NHP) (Macaca fascicularis). In OHT-NHP, DcB potently lowers IOP, in both acute (24 h) and extended (7-10 days) settings, accompanied by increased aqueous humor flow rate (AFR). By contrast, ocular normotensive animals (ONT-NHP) are poorly responsive to DcB, if at all. The mechanism of action of DcB has been analyzed using isolated porcine ciliary epithelium and perfused enucleated eyes to study AH inflow and AH outflow facility, respectively. 1) DcB significantly stimulates AH inflow although prior addition of 8-Br-cAMP, which raises AH inflow, precludes additional effects of DcB. 2) DcB significantly increases AH outflow facility via the trabecular meshwork (TM). Taken together, the data indicate that the original hypothesis on the mechanism of action must be revised. In the OHT-NHP, and presumably other species, DcB lowers IOP by increasing AH outflow facility rather than by decreasing AH inflow.NEW & NOTEWORTHY When applied topically, a cyclobutyl derivative of digoxin (DcB) potently reduces intraocular pressure in an ocular hypertensive nonhuman primate model (Macaca fascicularis), associated with increased aqueous humor (AH) flow rate (AFR). The mechanism of action of DcB involves increased AH outflow facility as detected in enucleated perfused porcine eyes and, in parallel, increased (AH) inflow as detected in isolated porcine ciliary epithelium. DcB might have potential as a drug for the treatment of open-angle human glaucoma.


Asunto(s)
Humor Acuoso , Digoxina , Presión Intraocular , Macaca fascicularis , Hipertensión Ocular , Animales , Presión Intraocular/efectos de los fármacos , Digoxina/farmacología , Humor Acuoso/metabolismo , Humor Acuoso/efectos de los fármacos , Hipertensión Ocular/tratamiento farmacológico , Hipertensión Ocular/fisiopatología , Hipertensión Ocular/metabolismo , Modelos Animales de Enfermedad , Glaucoma/tratamiento farmacológico , Glaucoma/metabolismo , Glaucoma/fisiopatología , Conejos , Humanos , Cuerpo Ciliar/efectos de los fármacos , Cuerpo Ciliar/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Masculino , Malla Trabecular/efectos de los fármacos , Malla Trabecular/metabolismo
2.
Nephron ; 148(3): 179-184, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37666233

RESUMEN

INTRODUCTION: Familial hyperkalemic hypertension (FHHt) is an inherited disease characterized by hyperkalemia, hypertension, and hyperchloremic acidosis (HCA). The primary defect is a hyperactive sodium chloride co-transporter, expressed in the renal distal tubule. FHHt is caused by mutation in either WNK1, WNK4, KLHL3, or Cul3. The mechanism of HCA is not completely understood. METHODS: Clinical and genetic data were collected from the largest family with FHHt described in the literature. Urine ammonia was measured in 26 family members. Epilepsy was diagnosed clinically. RESULTS: Of the 85 family members, 44 are affected by the Q565E WNK4 mutation, and 28 are newly described. In genetically engineered mice, urinary ammonium was decreased. In our study, urine ammonium did not change. In 11 unaffected subjects, urine ammonia per creatinine was 8.013 ± 3.620 mm/mm, and in 15 subjects affected by FHHt, it was 8.990 ± 4.300 mm/mm (p = 0.546, not significant). Due to the large family size and prolonged follow-up, rare conditions can be identified. Indeed, two children have genetic generalized epilepsy and one child has migraine. The prevalence of epilepsy is 4.545% (2/44) much higher than in the general population (0.681%). This difference is statistically significant (χ2 with Yates correction = 5.127, p = 0.023). CONCLUSIONS: We provide further evidence that the origin of HCA in FHHt lies in the proximal renal tubule. The association of FHHt with epilepsy leads us to speculate that the raised serum K in susceptible subjects may cause a rise in CSF K, and extracellular cerebral K, leading to epilepsy.


Asunto(s)
Acidosis Tubular Renal , Compuestos de Amonio , Epilepsia , Hiperpotasemia , Hipertensión , Seudohipoaldosteronismo , Niño , Ratones , Animales , Humanos , Hiperpotasemia/complicaciones , Hiperpotasemia/genética , Acidosis Tubular Renal/complicaciones , Acidosis Tubular Renal/genética , Amoníaco , Proteínas Serina-Treonina Quinasas/genética , Hipertensión/complicaciones , Hipertensión/genética , Seudohipoaldosteronismo/genética , Epilepsia/complicaciones , Epilepsia/genética , Convulsiones
3.
J Biol Chem ; 297(6): 101355, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34717959

RESUMEN

The ion pump Na+,K+-ATPase is a critical determinant of neuronal excitability; however, its role in the etiology of diseases of the central nervous system (CNS) is largely unknown. We describe here the molecular phenotype of a Trp931Arg mutation of the Na+,K+-ATPase catalytic α1 subunit in an infant diagnosed with therapy-resistant lethal epilepsy. In addition to the pathological CNS phenotype, we also detected renal wasting of Mg2+. We found that membrane expression of the mutant α1 protein was low, and ion pumping activity was lost. Arginine insertion into membrane proteins can generate water-filled pores in the plasma membrane, and our molecular dynamic (MD) simulations of the principle states of Na+,K+-ATPase transport demonstrated massive water inflow into mutant α1 and destabilization of the ion-binding sites. MD simulations also indicated that a water pathway was created between the mutant arginine residue and the cytoplasm, and analysis of oocytes expressing mutant α1 detected a nonspecific cation current. Finally, neurons expressing mutant α1 were observed to be depolarized compared with neurons expressing wild-type protein, compatible with a lowered threshold for epileptic seizures. The results imply that Na+,K+-ATPase should be considered a neuronal locus minoris resistentia in diseases associated with epilepsy and with loss of plasma membrane integrity.


Asunto(s)
Epilepsia/genética , Mutación Missense , ATPasa Intercambiadora de Sodio-Potasio/genética , Animales , Anticonvulsivantes/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Resistencia a Medicamentos , Epilepsia/tratamiento farmacológico , Epilepsia/patología , Humanos , Lactante , Simulación de Dinámica Molecular , Mutación Missense/efectos de los fármacos , Subunidades de Proteína/análisis , Subunidades de Proteína/genética , ATPasa Intercambiadora de Sodio-Potasio/análisis , Xenopus
5.
J Pharmacol Toxicol Methods ; 94(Pt 2): 64-72, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30244071

RESUMEN

INTRODUCTION: Ouabain and digoxin are classical inhibitors of the Na+,K+-ATPase. In addition to their conventional uses as therapeutic agents or experimental tools there is renewed interest due to evidence suggesting they could be endogenous hormones. Somewhat surprisingly, different publications show large discrepancies in potency for inhibiting Na+,K+-ATPase activity (IC50), particularly for the slow binding inhibitors, ouabain and digoxin. METHODS: Using purified pig kidney Na+,K+-ATPase (α1ß1FXYD2) and purified detergent-soluble recombinant human Na+,K+-ATPase (α1ß1FXYD1) we have re-evaluated binding and inhibition kinetics and effects of K+ concentration for ouabain, digoxin, ouabagenin and digoxigenin. RESULTS: We demonstrate unequivocally that for slow binding inhibitors, ouabain and digoxin, long incubation times (≥60 min at 37 °C) are required to avoid under-estimation of potency and correctly determine inhibition (IC50 around 100-200 nM at 5 mM K+) contrary to what occurs when pre-incubation of the drugs without ATP is followed by a short incubation time. By contrast, for the rapidly bound inhibitors, ouabagenin and digoxigenin, short incubation times suffice (<10 min). The strong reduction of inhibitory potency observed at high un-physiological K+ concentrations (≥5 mM) also explained the low potency reported by some authors. DISCUSSION: The data resolve discrepancies in the literature attributable to sub-optimal assay conditions. Similar IC50 values are obtained for pig kidney and recombinant human Na+,K+-ATPase, showing that inhibitory potencies are not determined by the species difference (pig versus human) or environment (membrane-bound versus detergent-soluble) of the Na+,K+-ATPase. The present methodological considerations are especially relevant for drug development of slow binding inhibitors.


Asunto(s)
Glicósidos Cardíacos/farmacología , Glicósidos Cardíacos/farmacocinética , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Digoxigenina/farmacocinética , Digoxina/farmacocinética , Humanos , Riñón/enzimología , Ouabaína/análogos & derivados , Ouabaína/farmacocinética , Unión Proteica , Relación Estructura-Actividad , Porcinos
6.
Physiol Rep ; 6(17): e13843, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30175537

RESUMEN

This article examines the central role of Na,K-ATPase (α1ß1FXYD2) in renal Mg handling, especially in distal convoluted tubule (DCT), the segment responsible for final regulation of Mg balance. By considering effects of Na,K-ATPase on intracellular Na and K concentrations, and driving forces for Mg transport, we propose a consistent rationale explaining basal Mg reabsorption in DCT and altered Mg reabsorption in some human diseases. FXYD2 (γ subunit) is a regulatory subunit that adapts functional properties of Na,K-ATPase to cellular requirements. Mutations in FXYD2 (G41R), and transcription factors (HNF-1B and PCBD1) that affect FXYD2 expression are associated with hypomagnesemia with hypermagnesuria. These mutations result in impaired interactions of FXYD2 with Na,K-ATPase. Renal Mg wasting implies that Na,K-ATPase is inhibited, but in vitro studies show that FXYD2 itself inhibits Na,K-ATPase activity, raising K0.5 Na. However, FXYD2 also stabilizes the protein by amplifying specific interactions with phosphatidylserine and cholesterol within the membrane. Renal Mg wasting associated with impaired Na,K-ATPase/FXYD2 interactions is explained simply by destabilization and inactivation of Na,K-ATPase. We consider also the role of the Na,K-ATPase in Mg (and Ca) handling in Gitelman syndrome and Familial hyperkalemia and hypertension (FHHt). Renal Mg handling serves as a convenient marker for Na,K-ATPase activity in DCT.


Asunto(s)
Síndrome de Gitelman/metabolismo , Riñón/metabolismo , Magnesio/metabolismo , Seudohipoaldosteronismo/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Síndrome de Gitelman/genética , Humanos , Seudohipoaldosteronismo/genética , ATPasa Intercambiadora de Sodio-Potasio/genética
7.
Nephron ; 138(2): 113-118, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29169235

RESUMEN

BACKGROUND: Hypomagnesemia is a known predisposing condition for the appearance of digitalis toxicity. The detection of a genetic form of Mg urinary wasting with hypomagnesemia being caused by a mutation in the γ subunit (FXYD2) of the Na,K-ATPase, the pharmacological target of Digoxin, prompted us to investigate whether Digoxin administration increases urinary Mg excretion. METHODS: Two groups of subjects, with rapid atrial fibrillation, received intravenous Digoxin (n = 9) or verapamil (n = 8), for heart rate control. During the following 4 h, blood and urinary creatinine, sodium, potassium, calcium, and magnesium levels were determined, and fractional excretion (Fex) values for Na, K, Ca, and Mg were calculated. RESULTS: In the Digoxin group, at 60 min Fex Mg rose from 3.07 ± 1.21 to 7.58 ± 2.51% (an increase of 269 ± 107% of baseline, p < 0.001), and at 240 min to 6.05 ± 2.30% (204 ± 56% of baseline, p < 0.01). No significant change was observed for Fex Na, Fex K, and Fex Ca. A striking correlation was found between individual values of Fex Mg and serum Digoxin concentration (r = 0.678, p < 0.0001). No significant correlation was found between Fex Na or Fex K and serum Digoxin. A correlation of borderline significance was found between Fex Ca and serum Digoxin (r = 0.349, p = 0.073). CONCLUSIONS: The hypermagnesuric effect of acute Digoxin treatment is reminiscent of the effect of the missense mutation in FXYD2, which assumes that FXYD2 is a positive regulator of Na,K-ATPase in the distal convoluted tubule (DCT). The borderline calciuric effect of Digoxin may point to an additional site of action, more proximal to the DCT, that is, the thick ascending limb.


Asunto(s)
Antiarrítmicos/efectos adversos , Digoxina/efectos adversos , Magnesio/orina , Administración Intravenosa , Anciano , Anciano de 80 o más Años , Antiarrítmicos/administración & dosificación , Antiarrítmicos/sangre , Fibrilación Atrial/complicaciones , Fibrilación Atrial/tratamiento farmacológico , Digoxina/administración & dosificación , Digoxina/sangre , Femenino , Frecuencia Cardíaca , Humanos , Pruebas de Función Renal , Masculino , ATPasa Intercambiadora de Sodio-Potasio/genética , Verapamilo/uso terapéutico
8.
Proc Natl Acad Sci U S A ; 114(11): 2904-2909, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28242691

RESUMEN

Membrane protein function can be affected by the physical state of the lipid bilayer and specific lipid-protein interactions. For Na,K-ATPase, bilayer properties can modulate pump activity, and, as observed in crystal structures, several lipids are bound within the transmembrane domain. Furthermore, Na,K-ATPase activity depends on phosphatidylserine (PS) and cholesterol, which stabilize the protein, and polyunsaturated phosphatidylcholine (PC) or phosphatidylethanolamine (PE), known to stimulate Na,K-ATPase activity. Based on lipid structural specificity and kinetic mechanisms, specific interactions of both PS and PC/PE have been inferred. Nevertheless, specific binding sites have not been identified definitively. We address this question with native mass spectrometry (MS) and site-directed mutagenesis. Native MS shows directly that one molecule each of 18:0/18:1 PS and 18:0/20:4 PC can bind specifically to purified human Na,K-ATPase (α1ß1). By replacing lysine residues at proposed phospholipid-binding sites with glutamines, the two sites have been identified. Mutations in the cytoplasmic αL8-9 loop destabilize the protein but do not affect Na,K-ATPase activity, whereas mutations in transmembrane helices (TM), αTM2 and αTM4, abolish the stimulation of activity by 18:0/20:4 PC but do not affect stability. When these data are linked to crystal structures, the underlying mechanism of PS and PC/PE effects emerges. PS (and cholesterol) bind between αTM 8, 9, 10, near the FXYD subunit, and maintain topological integrity of the labile C terminus of the α subunit (site A). PC/PE binds between αTM2, 4, 6, and 9 and accelerates the rate-limiting E1P-E2P conformational transition (site B). We discuss the potential physiological implications.


Asunto(s)
Sitios de Unión , Fosfolípidos/química , Fosfolípidos/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Activación Enzimática , Humanos , Espectrometría de Masas , Modelos Moleculares , Conformación Molecular , Unión Proteica , Estabilidad Proteica
9.
J Biol Chem ; 291(44): 23159-23174, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27624940

RESUMEN

The Na,K-ATPase α2 subunit plays a key role in cardiac muscle contraction by regulating intracellular Ca2+, whereas α1 has a more conventional role of maintaining ion homeostasis. The ß subunit differentially regulates maturation, trafficking, and activity of α-ß heterodimers. It is not known whether the distinct role of α2 in the heart is related to selective assembly with a particular one of the three ß isoforms. We show here by immunofluorescence and co-immunoprecipitation that α2 is preferentially expressed with ß2 in T-tubules of cardiac myocytes, forming α2ß2 heterodimers. We have expressed human α1ß1, α2ß1, α2ß2, and α2ß3 in Pichia pastoris, purified the complexes, and compared their functional properties. α2ß2 and α2ß3 differ significantly from both α2ß1 and α1ß1 in having a higher K0.5K+ and lower K0.5Na+ for activating Na,K-ATPase. These features are the result of a large reduction in binding affinity for extracellular K+ and shift of the E1P-E2P conformational equilibrium toward E1P. A screen of perhydro-1,4-oxazepine derivatives of digoxin identified several derivatives (e.g. cyclobutyl) with strongly increased selectivity for inhibition of α2ß2 and α2ß3 over α1ß1 (range 22-33-fold). Molecular modeling suggests a possible basis for isoform selectivity. The preferential assembly, specific T-tubular localization, and low K+ affinity of α2ß2 could allow an acute response to raised ambient K+ concentrations in physiological conditions and explain the importance of α2ß2 for cardiac muscle contractility. The high sensitivity of α2ß2 to digoxin derivatives explains beneficial effects of cardiac glycosides for treatment of heart failure and potential of α2ß2-selective digoxin derivatives for reducing cardiotoxicity.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Inhibidores Enzimáticos/química , Miocardio/enzimología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/química , Animales , Proteínas de Transporte de Catión/antagonistas & inhibidores , Proteínas de Transporte de Catión/química , Moléculas de Adhesión Celular Neuronal/antagonistas & inhibidores , Moléculas de Adhesión Celular Neuronal/química , Dimerización , Inhibidores Enzimáticos/metabolismo , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Ratones , Miocardio/química , Potasio/química , Potasio/metabolismo , Sodio/química , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/genética
10.
J Biol Chem ; 291(22): 11736-50, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27022017

RESUMEN

Much evidence points to a role of Na,K-ATPase in ouabain-dependent signal transduction. Based on experiments with different cell lines and native tissue membranes, a current hypothesis postulates direct interactions between the Na,K-ATPase and Src kinase (non-receptor tyrosine kinase). Na,K-ATPase is proposed to bind Src kinase and inhibit its activity, whereas ouabain, the specific Na,K-ATPase inhibitor, binds and stabilizes the E2 conformation, thus exposing the Src kinase domain and its active site Tyr-418 for activation. Ouabain-dependent signaling is thought to be mediated within caveolae by a complex consisting of Na,K-ATPase, caveolin, and Src kinase. In the current work, we have looked for direct interactions utilizing purified recombinant Na,K-ATPase (human α1ß1FXYD1 or porcine α1D369Nß1FXYD1) and purified human Src kinase and human caveolin 1 or interactions between these proteins in native membrane vesicles isolated from rabbit kidney. By several independent criteria and techniques, no stable interactions were detected between Na,K-ATPase and purified Src kinase. Na,K-ATPase was found to be a substrate for Src kinase phosphorylation at Tyr-144. Clear evidence for a direct interaction between purified human Na,K-ATPase and human caveolin was obtained, albeit with a low molar stoichiometry (1:15-30 caveolin 1/Na,K-ATPase). In native renal membranes, a specific caveolin 14-5 oligomer (95 kDa) was found to be in direct interaction with Na,K-ATPase. We inferred that a small fraction of the renal Na,K-ATPase molecules is in a ∼1:1 complex with a caveolin 14-5 oligomer. Thus, overall, whereas a direct caveolin 1/Na,K-ATPase interaction is confirmed, the lack of direct Src kinase/Na,K-ATPase binding requires reassessment of the mechanism of ouabain-dependent signaling.


Asunto(s)
Caveolina 1/metabolismo , Membrana Celular/metabolismo , Médula Renal/metabolismo , Microsomas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Familia-src Quinasas/metabolismo , Animales , Western Blotting , Caveolas/metabolismo , Células Cultivadas , Vesículas Citoplasmáticas/metabolismo , Humanos , Inmunoprecipitación , Fosforilación , Unión Proteica , Conejos , Transducción de Señal , Porcinos
12.
Proc Natl Acad Sci U S A ; 112(44): 13723-8, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26483500

RESUMEN

The ciliary epithelium in the eye consists of pigmented epithelial cells that express the α1ß1 isoform of Na,K-ATPase and nonpigmented epithelial cells that express mainly the α2ß3 isoform. In principle, a Na,K-ATPase inhibitor with selectivity for α2ß3 that penetrates the cornea could effectively reduce intraocular pressure, with minimal systemic or local toxicity. We have recently synthesized perhydro-1,4-oxazepine derivatives of digoxin by NaIO4 oxidation of the third digitoxose and reductive amination with various R-NH2 substituents and identified derivatives with significant selectivity for human α2ß1 over α1ß1 (up to 7.5-fold). When applied topically, the most α2-selective derivatives effectively prevented or reversed pharmacologically raised intraocular pressure in rabbits. A recent structure of Na,K-ATPase, with bound digoxin, shows the third digitoxose approaching one residue in the ß1 subunit, Gln84, suggesting a role for ß in digoxin binding. Gln84 in ß1 is replaced by Val88 in ß3. Assuming that alkyl substituents might interact with ß3Val88, we synthesized perhydro-1,4-oxazepine derivatives of digoxin with diverse alkyl substituents. The methylcyclopropyl and cyclobutyl derivatives are strongly selective for α2ß3 over α1ß1 (22-33-fold respectively), as determined either with purified human isoform proteins or intact bovine nonpigmented epithelium cells. When applied topically on rabbit eyes, these derivatives potently reduce both pharmacologically raised and basal intraocular pressure. The cyclobutyl derivative is more efficient than Latanoprost, the most widely used glaucoma drug. Thus, the conclusion is that α2ß3-selective digoxin derivatives effectively penetrate the cornea and inhibit the Na,K-ATPase, hence reducing aqueous humor production. The new digoxin derivatives may have potential for glaucoma drug therapy.


Asunto(s)
Digoxina/farmacología , Presión Intraocular/efectos de los fármacos , Isoenzimas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Bovinos , Femenino , Masculino , Conejos
13.
J Biol Chem ; 290(48): 28746-59, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26429909

RESUMEN

Phospholemman (FXYD1) is a single-transmembrane protein regulator of Na,K-ATPase, expressed strongly in heart, skeletal muscle, and brain and phosphorylated by protein kinases A and C at Ser-68 and Ser-63, respectively. Binding of FXYD1 reduces Na,K-ATPase activity, and phosphorylation at Ser-68 or Ser-63 relieves the inhibition. Despite the accumulated information on physiological effects, whole cell studies provide only limited information on molecular mechanisms. As a complementary approach, we utilized purified human Na,K-ATPase (α1ß1 and α2ß1) reconstituted with FXYD1 or mutants S63E, S68E, and S63E,S68E that mimic phosphorylation at Ser-63 and Ser-68. Compared with control α1ß1, FXYD1 reduces Vmax and turnover rate and raises K0.5Na. The phosphomimetic mutants reverse these effects and reduce K0.5Na below control K0.5Na. Effects on α2ß1 are similar but smaller. Experiments in proteoliposomes reconstituted with α1ß1 show analogous effects of FXYD1 on K0.5Na, which are abolished by phosphomimetic mutants and also by increasing mole fractions of DOPS in the proteoliposomes. Stopped-flow experiments using the dye RH421 show that FXYD1 slows the conformational transition E2(2K)ATP → E1(3Na)ATP but does not affect 3NaE1P → E2P3Na. This regulatory effect is explained simply by molecular modeling, which indicates that a cytoplasmic helix (residues 60-70) docks between the αN and αP domains in the E2 conformation, but docking is weaker in E1 (also for phosphomimetic mutants). Taken together with previous work showing that FXYD1 also raises binding affinity for the Na(+)-selective site III, these results provide a rather comprehensive picture of the regulatory mechanism of FXYD1 that complements the physiological studies.


Asunto(s)
Proteínas de la Membrana/química , Mutación Missense , Fosfoproteínas/química , ATPasa Intercambiadora de Sodio-Potasio/química , Sustitución de Aminoácidos , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
14.
Am J Physiol Cell Physiol ; 309(2): C126-35, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25994790

RESUMEN

The Na+-K+-ATPase is specifically inhibited by cardiac glycosides, some of which may also function as endogenous mammalian hormones. Previous studies using Xenopus oocytes, yeast cells, or purified isoforms demonstrated that affinities of various cardiac glycosides for three isoforms of the Na+-K+-ATPase (α1-α3ß1) may differ, a finding with potential clinical implication. The present study investigates isoform selectivity and effects of cardiac glycosides on cultured mammalian cells under more physiological conditions. H1299 cells (non-small cell lung carcinoma) were engineered to express only one α-isoform (α1, α2, or α3) by combining stable transfection of isoforms and silencing endogenous α1. Cardiac glycoside binding was measured by displacement of bound 3H-ouabain. The experiments confirm moderate α1/α3:α2 selectivity of ouabain, moderate α2:α1 selectivity of digoxin, and enhanced α2:α1 selectivity of synthetic derivatives (Katz A, Tal DM, Heller D, Haviv H, Rabah B, Barkana Y, Marcovich AL, Karlish SJD. J Biol Chem 289: 21153-21162, 2014). Relative α2:α1 selectivity of digoxin vs. ouabain was also manifested by enhanced internalization of α2 in response to digoxin. Cellular proliferation assays of H1299 cells confirmed the patterns of α2:α1 selectivity for ouabain, digoxin, and a synthetic derivative and reveal a crucial role of surface pump density on sensitivity to cardiac glycosides. Because cardiac glycosides are being considered as drugs for treatment of cancer, effects of ouabain on proliferation of 12 cancer and noncancer cell lines, with variable plasma membrane expression of α1, have been tested. These demonstrated that sensitivity to ouabain indeed depends linearly on the plasma membrane surface density of Na+-K+-ATPase irrespective of status, malignant or nonmalignant.


Asunto(s)
Antineoplásicos/farmacología , Glicósidos Cardíacos/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias/enzimología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Antineoplásicos/metabolismo , Unión Competitiva , Glicósidos Cardíacos/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Digoxina/metabolismo , Digoxina/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/metabolismo , Humanos , Isoenzimas , Neoplasias/genética , Neoplasias/patología , Ouabaína/metabolismo , Ouabaína/farmacología , Unión Proteica , Interferencia de ARN , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Transfección
15.
J Biol Chem ; 290(8): 4829-4842, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25533463

RESUMEN

The activity of membrane proteins such as Na,K-ATPase depends strongly on the surrounding lipid environment. Interactions can be annular, depending on the physical properties of the membrane, or specific with lipids bound in pockets between transmembrane domains. This paper describes three specific lipid-protein interactions using purified recombinant Na,K-ATPase. (a) Thermal stability of the Na,K-ATPase depends crucially on a specific interaction with 18:0/18:1 phosphatidylserine (1-stearoyl-2-oleoyl-sn-glycero-3-phospho-L-serine; SOPS) and cholesterol, which strongly amplifies stabilization. We show here that cholesterol associates with SOPS, FXYD1, and the α subunit between trans-membrane segments αTM8 and -10 to stabilize the protein. (b) Polyunsaturated neutral lipids stimulate Na,K-ATPase turnover by >60%. A screen of the lipid specificity showed that 18:0/20:4 and 18:0/22:6 phosphatidylethanolamine (PE) are the optimal phospholipids for this effect. (c) Saturated phosphatidylcholine and sphingomyelin, but not saturated phosphatidylserine or PE, inhibit Na,K-ATPase activity by 70-80%. This effect depends strongly on the presence of cholesterol. Analysis of the Na,K-ATPase activity and E1-E2 conformational transitions reveals the kinetic mechanisms of these effects. Both stimulatory and inhibitory lipids poise the conformational equilibrium toward E2, but their detailed mechanisms of action are different. PE accelerates the rate of E1 → E2P but does not affect E2(2K)ATP → E13NaATP, whereas sphingomyelin inhibits the rate of E2(2K)ATP → E13NaATP, with very little effect on E1 → E2P. We discuss these lipid effects in relation to recent crystal structures of Na,K-ATPase and propose that there are three separate sites for the specific lipid interactions, with potential physiological roles to regulate activity and stability of the pump.


Asunto(s)
Colesterol/química , Proteínas de la Membrana/química , Fosfatidilserinas/química , Fosfolípidos/química , Fosfoproteínas/química , ATPasa Intercambiadora de Sodio-Potasio/química , Colesterol/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Fosfatidilserinas/metabolismo , Fosfolípidos/metabolismo , Fosfoproteínas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
16.
J Biol Chem ; 289(30): 21153-62, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-24917667

RESUMEN

In the ciliary epithelium of the eye, the pigmented cells express the α1ß1 isoform of Na,K-ATPase, whereas the non-pigmented cells express mainly the α2ß3 isoform of Na,K-ATPase. In principle, a Na,K-ATPase inhibitor with selectivity for α2 could effectively reduce intraocular pressure with only minimal local and systemic toxicity. Such an inhibitor could be applied topically provided it was sufficiently permeable via the cornea. Previous experiments with recombinant human α1ß1, α2ß1, and α3ß1 isoforms showed that the classical cardiac glycoside, digoxin, is partially α2-selective and also that the trisdigitoxose moiety is responsible for isoform selectivity. This led to a prediction that modification of the third digitoxose might increase α2 selectivity. A series of perhydro-1,4-oxazepine derivatives of digoxin have been synthesized by periodate oxidation and reductive amination using a variety of R-NH2 substituents. Several derivatives show enhanced selectivity for α2 over α1, close to 8-fold in the best case. Effects of topically applied cardiac glycosides on intraocular pressure in rabbits have been assessed by their ability to either prevent or reverse acute intraocular pressure increases induced by 4-aminopyridine or a selective agonist of the A3 adenosine receptor. Two relatively α2-selective digoxin derivatives efficiently normalize the ocular hypertension, by comparison with digoxin, digoxigenin, or ouabain. This observation is consistent with a major role of α2 in aqueous humor production and suggests that, potentially, α2-selective digoxin derivatives could be of interest as novel drugs for control of intraocular pressure.


Asunto(s)
Digoxina , Inhibidores Enzimáticos/farmacología , Presión Intraocular/efectos de los fármacos , Hipertensión Ocular/tratamiento farmacológico , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , 4-Aminopiridina/farmacología , Antagonistas del Receptor de Adenosina A3/farmacología , Administración Tópica , Animales , Digoxina/análogos & derivados , Digoxina/farmacología , Humanos , Isoenzimas/metabolismo , Hipertensión Ocular/enzimología , Bloqueadores de los Canales de Potasio/farmacología , Conejos , Receptor de Adenosina A3/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
17.
J Biol Chem ; 289(2): 1049-59, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24275648

RESUMEN

Internalization of the Na(+)/K(+)-ATPase (the Na(+) pump) has been studied in the human lung carcinoma cell line H1299 that expresses YFP-tagged α1 from its normal genomic localization. Both real-time imaging and surface biotinylation have demonstrated internalization of α1 induced by ≥100 nm ouabain which occurs in a time scale of hours. Unlike previous studies in other systems, the ouabain-induced internalization was insensitive to Src or PI3K inhibitors. Accumulation of α1 in the cells could be augmented by inhibition of lysosomal degradation but not by proteosomal inhibitors. In agreement, the internalized α1 could be colocalized with the lysosomal marker LAMP1 but not with Golgi or nuclear markers. In principle, internalization could be triggered by a conformational change of the ouabain-bound Na(+)/K(+)-ATPase molecule or more generally by the disruption of cation homeostasis (Na(+), K(+), Ca(2+)) due to the partial inhibition of active Na(+) and K(+) transport. Overexpression of ouabain-insensitive rat α1 failed to inhibit internalization of human α1 expressed in the same cells. In addition, incubating cells in a K(+)-free medium did not induce internalization of the pump or affect the response to ouabain. Thus, internalization is not the result of changes in the cellular cation balance but is likely to be triggered by a conformational change of the protein itself. In physiological conditions, internalization may serve to eliminate pumps that have been blocked by endogenous ouabain or other cardiac glycosides. This mechanism may be required due to the very slow dissociation of the ouabain·Na(+)/K(+)-ATPase complex.


Asunto(s)
Endocitosis/efectos de los fármacos , Lisosomas/metabolismo , Ouabaína/farmacología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Cicloheximida/farmacología , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Microscopía Confocal , Potasio/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Proteolisis/efectos de los fármacos , Pirimidinas/farmacología , Ratas , ATPasa Intercambiadora de Sodio-Potasio/genética , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo
18.
J Biol Chem ; 288(14): 10073-10081, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23430748

RESUMEN

Membrane proteins interact with phospholipids either via an annular layer surrounding the transmembrane segments or by specific lipid-protein interactions. Although specifically bound phospholipids are observed in many crystal structures of membrane proteins, their roles are not well understood. Na,K-ATPase is highly dependent on acid phospholipids, especially phosphatidylserine, and previous work on purified detergent-soluble recombinant Na,K-ATPase showed that phosphatidylserine stabilizes and specifically interacts with the protein. Most recently the phosphatidylserine binding site has been located between transmembrane segments of αTM8-10 and the FXYD protein. This paper describes stimulation of Na,K-ATPase activity of the purified human α1ß1 or α1ß1FXYD1 complexes by neutral phospholipids, phosphatidylcholine, or phosphatidylethanolamine. In the presence of phosphatidylserine, soy phosphatidylcholine increases the Na,K-ATPase turnover rate from 5483 ± 144 to 7552 ± 105 (p < 0.0001). Analysis of α1ß1FXYD1 complexes prepared with native or synthetic phospholipids shows that the stimulatory effect is structurally selective for neutral phospholipids with polyunsaturated fatty acyl chains, especially dilinoleoyl phosphatidylcholine or phosphatidylethanolamine. By contrast to phosphatidylserine, phosphatidylcholine or phosphatidylethanolamine destabilizes the Na,K-ATPase. Structural selectivity for stimulation of Na,K-ATPase activity and destabilization by neutral phospholipids distinguish these effects from the stabilizing effects of phosphatidylserine and imply that the phospholipids bind at distinct sites. A re-examination of electron densities of shark Na,K-ATPase is consistent with two bound phospholipids located between transmembrane segments αTM8-10 and TMFXYD (site A) and between TM2, -4, -6, -and 9 (site B). Comparison of the phospholipid binding pockets in E2 and E1 conformations suggests a possible mechanism of stimulation of Na,K-ATPase activity by the neutral phospholipid.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Lípidos/química , Fosfolípidos/química , ATPasa Intercambiadora de Sodio-Potasio/química , Animales , Sitios de Unión , Bovinos , Electrones , Humanos , Proteínas de la Membrana/química , Modelos Moleculares , Conformación Molecular , Fosfatidiletanolaminas/química , Fosfoproteínas/química , Unión Proteica , Proteínas Recombinantes/química , Glycine max/metabolismo , Porcinos , Temperatura , Factores de Tiempo
19.
J Biol Chem ; 286(50): 42888-99, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22027833

RESUMEN

The α2 isoform of Na,K-ATPase plays a crucial role in Ca(2+) handling, muscle contraction, and inotropic effects of cardiac glycosides. Thus, structural, functional, and pharmacological comparisons of α1, α2, and α3 are of great interest. In Pichia pastoris membranes expressing human α1ß1, α2ß1, and α3ß1 isoforms, or using the purified isoform proteins, α2 is most easily inactivated by heating and detergent (α2 ≫ α3 > α1). We have examined an hypothesis that instability of α2 is caused by weak interactions with phosphatidylserine, which stabilizes the protein. Three residues, unique to α2, in trans-membrane segments M8 (Ala-920), M9 (Leu-955), and M10 (Val-981) were replaced by equivalent residues in α1, singly or together. Judged by the sensitivity of the purified proteins to heat, detergent, "affinity" for phosphatidylserine, and stabilization by FXYD1, the triple mutant (A920V/L955F/V981P, called α2VFP) has stability properties close to α1, although single mutants have only modest or insignificant effects. Functional differences between α1 and α2 are unaffected in α2VFP. A compound, 6-pentyl-2-pyrone, isolated from the marine fungus Trichoderma gamsii is a novel probe of specific phospholipid-protein interactions. 6-Pentyl-2-pyrone inactivates the isoforms in the order α2 ≫ α3 > α1, and α2VFP and FXYD1 protect the isoforms. In native rat heart sarcolemma membranes, which contain α1, α2, and α3 isoforms, a component attributable to α2 is the least stable. The data provide clear evidence for a specific phosphatidylserine binding pocket between M8, M9, and M10 and confirm that the instability of α2 is due to suboptimal interactions with phosphatidylserine. In physiological conditions, the instability of α2 may be important for its cellular regulatory functions.


Asunto(s)
Isoenzimas/metabolismo , Fosfolípidos/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Estabilidad de Enzimas/efectos de los fármacos , Humanos , Isoenzimas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microsomas/metabolismo , Mutación , Fosfatidilserinas/antagonistas & inhibidores , Fosfatidilserinas/metabolismo , Fosfolípidos/antagonistas & inhibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica/efectos de los fármacos , Pironas/farmacología , Ratas , Sarcolema/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética
20.
Biochemistry ; 50(18): 3736-48, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21449573

RESUMEN

The human α(1)/His(10)-ß(1) isoform of the Na,K-ATPase has been expressed in Pichia pastoris, solubilized in n-dodecyl-ß-maltoside, and purified by metal chelate chromatography. The α(1)ß(1) complex spontaneously associates in vitro with the detergent-solubilized purified human FXYD1 (phospholemman) expressed in Escherichia coli. It has been confirmed that FXYD1 spontaneously associates in vitro with the α(1)/His(10)-ß(1) complex and stabilizes it in an active mode. The functional properties of the α(1)/His(10)-ß(1) and α(1)/His(10)-ß(1)/FXYD1 complexes have been investigated by fluorescence methods. The electrochromic dye RH421 which monitors binding to and release of ions from the binding sites has been applied in equilibrium titration experiments to determine ion binding affinities and revealed that FXYD1 induces an ∼30% increase of the Na(+)-binding affinity in both the E(1) and P-E(2) conformations. By contrast, it does not affect the affinities for K(+) and Rb(+) ions. Phosphorylation induced partial reactions of the enzyme have been studied as backdoor phosphorylation by inorganic phosphate and in kinetic experiments with caged ATP in order to evaluate the ATP-binding affinity and the time constant of the conformational transition, Na(3)E(1)-P → P-E(2)Na(3). No significant differences with or without FXYD1 could be detected. Rate constants of the conformational transitions Rb(2)E(1) → E(2)(Rb(2)) and E(2)(Rb(2)) → Na(3)E(1), investigated with fluorescein-labeled Na,K-ATPase, showed only minor or no effects of FXYD1, respectively. The conclusion from all these experiments is that FXYD1 raises the binding affinity of α(1)ß(1) for Na ions, presumably at the third Na-selective binding site. In whole cell expression studies FXYD1 reduces the apparent affinity for Na ions. Possible reasons for the difference from this study using the purified recombinant Na,K-ATPase are discussed.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Proteínas de la Membrana/fisiología , Fosfoproteínas/fisiología , ATPasa Intercambiadora de Sodio-Potasio/química , Sodio/química , Adenosina Trifosfato/química , Animales , Sitios de Unión , Bovinos , Relación Dosis-Respuesta a Droga , Humanos , Iones , Cinética , Proteínas de la Membrana/química , Fosfoproteínas/química , Pichia/metabolismo , Isoformas de Proteínas , Proteínas Recombinantes/química , Albúmina Sérica/química , Espectrometría de Fluorescencia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...